
CRYSTAL STRUCTURE OF 4,6-DIMETHYL-2-NITRO- AND 2-NITRO-5-PHENYL PYRIMIDINES

T. V. Rybalova, V. F. Sedova, Yu. V. Gatilov, and O. P. Shkurko

The crystal structures of two substituted 2-nitropyrimidines are solved by X-ray diffraction analysis. The influence of the nitro group and the endocyclic nitrogen atoms on the geometric parameters of the 2-nitropyrimidine and related α -nitroazines are discussed.

Previously we have published X-ray diffraction data for the crystal structure of 2-nitropyridine (I) and compared the obtained geometric parameters with those of nitrobenzene (II) [1]. In continuation of the study of the features of geometry of α -nitroazines, we focused our attention on substituted 2-nitropyrimidines. According to the Cambridge structural database [2] and the literature [3], only substituted 5-nitro derivatives of the nitropyrimidines have been studied. Only two of these, 2-(1,1-dicyanopent-4-yn-1-yl)-5-nitropyrimidine (IIIa) and 5-nitro-2-(1,1,3-tricyanoprop-1-yl)pyrimidine (IIIb) [4], do not have substituents in the 4- and 6-positions neighbouring to the nitro group of the heterocycle.

Nitro group in the 5-position of the pyrimidine ring is comparable in chemical and physical characteristics with nitro group in aromatic compounds [5, 6]. 2- And 4-nitropyrimidines are also interesting because the nitrogen atoms of the heterocycle and nitro group affect each other. In particular, this makes the latter highly nucleophilic in the mentioned nitro compounds [7]. Therefore, structural changes in the pyrimidine molecule caused by introduction of nitro group in the α -position to the ring nitrogen atom and in the molecule of nitroaromatic compound are interesting.

In the present work, the crystal structures of 4,6-dimethyl-2-nitropyrimidine (IV) and 2-nitro-5-phenylpyrimidine (V) are solved (Fig. 1).

The crystallographic data for IV and V are given in Table 1. The coordinates of non-hydrogen atoms appear in Tables 2 and 3. The individual bond lengths and angles are listed in Tables 4 and 5. According to the X-ray structure analysis, the nitro group in both compounds deviates from the plane of the pyrimidine ring by 10.7(2) and 10.4(1) $^{\circ}$, respectively. The turn of the phenyl group in V is 39.71(5) $^{\circ}$. This agrees with the values for 4-nitro-diphenyl (33.0 $^{\circ}$) [8] and 5-phenylpyrimidine (36.2 $^{\circ}$) [9].

Novosibirsk Institute of Organic Chemistry of the Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia; e-mail: benzol@nioch.nsc.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 348-354, March, 1999. Original article submitted January 15, 1998.

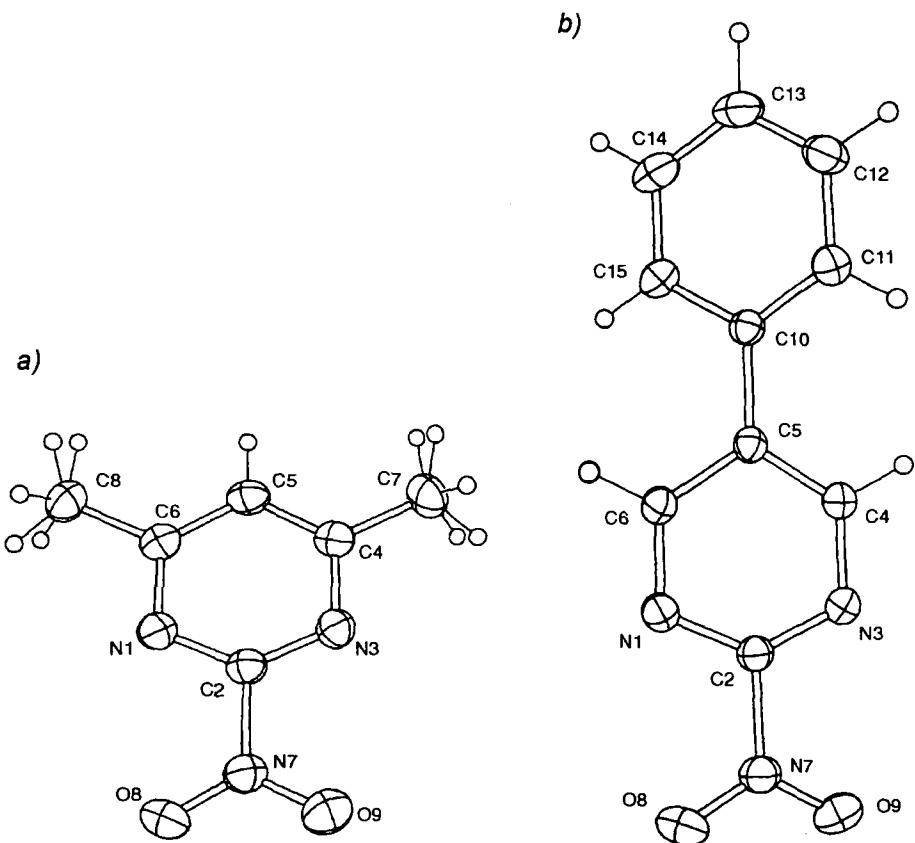


Fig. 1. X-ray structures of 4,6-dimethyl-2-nitropyrimidine IV and 2-nitro-5-phenylpyrimidine V (25% thermal ellipsoids are shown).

The differences in the lengths of formally equivalent bonds in IV and V are less than 3σ . We compared the average bond lengths in the fragments $\text{N}_{(1)}-\text{C}_{(2)}-\text{N}_{(3)}$, $\text{C}_{(2)}-\text{NO}_2$, and $\text{O}_{(8)}-\text{N}_{(7)}-\text{O}_{(9)}$ of IV and V (Table 6) with the statistical average values for the corresponding bonds in aromatic compounds [10] and the average bond lengths for 2-nitropyridine derivatives [1] and compounds IIIa,b [4] in order to reveal the effect of the nitro group and the ring nitrogen atoms on the geometric parameters of the $\text{N}_{(1)}-\text{C}_{(2)}-\text{NO}_2$ moiety.

The comparison indicates that introduction of nitro group in the α -position to the ring nitrogen atom results in a concomitant shortening of the ring C–N bond for 2-nitropyrimidines and 2-nitropyridines by 0.021–0.029 Å whereas there are no changes for 5-nitropyrimidines IIIa,b. The $\text{C}-\text{NO}_2$ bond length in IIIa,b is the same as the statistical average value for $\text{C}_{\text{Ar}}-\text{NO}_2$. However, it increases both in 2-nitropyrimidines and in 2-nitropyridines by 0.034 and 0.029 Å, respectively. The N–O bonds in nitropyrimidines and nitropyridines vary little from the statistical average. In 2-nitropyrimidines they are insignificantly shortened (by 0.005 Å); in 5-nitropyrimidines, lengthened by the same amount; and almost unchanged in 2-nitropyridines. Almost the same deviations can be produced by comparing *ab initio* calculations (3-21G basis set) [11] for the bond lengths in pyrimidine, 2-nitropyrimidine and nitrobenzene (bond lengths change by -0.023 Å for $\text{N}-\text{C}-\text{N}$, by +0.021 for $\text{C}-\text{NO}_2$, and by -0.004 Å for $\text{N}-\text{O}$). We have performed *ab initio* calculations (6-31G* basis set) for the bond lengths and angles in 4,6-dimethylpyrimidine (VI) and its 2-nitro analog IV and have found that the $\text{N}_{(1)}-\text{C}_{(2)}$ bond length in IV is shorter by 0.019 Å than in 4,6-dimethyl-substituted VI.

The bond angle α at the *ipso*-carbon atom is an important characteristic of the substituent effect on the aromatic (heteroaromatic) ring. The bond angles $\text{N}_{(1)}-\text{C}_{(2)}-\text{N}_{(3)}$ in pyrimidines IV and V are increased in comparison with the unsubstituted pyrimidine. The change in the angle ($\Delta\alpha$) for IV is +4.4°; for V, +3.0° (Table 7). The value of $\Delta\alpha$ for 4-nitropyrimidine V is comparable with the value for nitrobenzene; for IV, it is greater. This may be due to the presence of the methyl substituents in IV. Thus, if the average intracyclic angle α at $\text{C}_{(2)}$ for

TABLE 1. Crystal Data for IV and V

Parameter	Compound	
	IV	V
Empirical formula	C ₆ H ₇ N ₃ O ₂	C ₁₀ H ₇ N ₃ O ₂
Molecular mass	153,15	201,19
Cell type	Monoclinic	Triclinic
Space group	P2 ₁ /c	P1
Cell constants (Å)		
<i>a</i>	3,923(1)	3,8359(7)
<i>b</i>	24,124(6)	10,172(2)
<i>c</i>	7,838(1)	11,778(2)
α	90	96,42(2)
β	101,58(2)	93,93(2)
γ	90	96,77(2)
Cell volume (Å ³)	726,7(3)	451,9(1)
<i>Z</i>	4	2
Crystal dimensions (mm ³)	1,00 × 0,30 × 0,15	0,75 × 0,27 × 0,05
Scanning method	ω	$\theta/2\theta$
Region of θ (°)	3...57	3...70
Number of reflections	2605	2105
Number of independent reflections	1081	1725
Absorption correction	Along the face	Along the face
Transmission	0,877...0,671	0,959...0,688
<i>R</i> ₁ (<i>I</i> > 2 σ)	0,0435	0,0390
<i>wR</i> ₂ (all <i>I</i>)	0,1239	0,1137
<i>S</i>	1,037	1,041
Extinction	0,010(2)	0,066(5)

the series of 2-R-4,6-dimethylpyrimidines {R = N(CH₃)₂, NHCH₃, SCH₂COOH, S₂-[4,6-CH₃)₂-pyrimidin-2-yl], NHSO₂C₆H₄NH₂-*p*} taken from the Cambridge structure database [2] is 128,8(6)°, then $\Delta\alpha$ for the dimethyl derivative IV calculated relative to this average value, is 3,2°. This value is comparable with the change in the angle for nitrobenzene. An analogous result (see Table 7) was obtained using *ab initio* calculations and in the literature [11].

The data reviewed suggest that the nature of the influence of the nitro group and the azine ring in 2-nitropyridines and 2-nitropyrimidines is comparable.

TABLE 2. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Thermal Factors ($\text{\AA}^2 \times 10^3$) for Non-hydrogen Atoms of 4,6-Dimethyl-2-nitropyrimidine (IV)

Atom	<i>x/a</i>	<i>y/b</i>	<i>z/c</i>	<i>U_{eq}</i>
N ₍₁₎	7216(4)	5802(1)	346(2)	48(1)
C ₍₂₎	6550(5)	6241(1)	1213(2)	45(1)
N ₍₃₎	4832(4)	6697(1)	718(2)	49(1)
C ₍₄₎	3519(5)	6723(1)	-1014(3)	48(1)
C ₍₅₎	4012(6)	6288(1)	-2070(3)	51(1)
C ₍₆₎	5858(5)	5825(1)	-1376(3)	48(1)
N ₍₇₎	8041(5)	6211(1)	3136(2)	58(1)
O ₍₈₎	7156(6)	6557(1)	4072(2)	88(1)
O ₍₉₎	10070(6)	5844(1)	3652(2)	99(1)
C ₍₁₀₎	1631(7)	7240(1)	-1678(3)	64(1)
C ₍₁₁₎	6449(7)	5335(1)	-2439(3)	64(1)

TABLE 3. Atomic Coordinates ($\times 10^4$) and Equivalent Thermal Factors ($\text{\AA}^2 \times 10^3$) of Non-hydrogen Atoms in 2-Nitro-5-phenylpyrimidine (V)

Atom	<i>x/a</i>	<i>y/b</i>	<i>z/c</i>	<i>U_{eq}</i>
N ₍₁₎	3559(3)	1500(1)	9644(1)	41(1)
C ₍₂₎	3098(4)	2647(1)	9283(1)	38(1)
N ₍₃₎	1930(4)	3701(1)	9798(1)	42(1)
C ₍₄₎	1209(4)	3597(1)	10888(1)	40(1)
C ₍₅₎	1628(4)	2460(1)	11411(1)	35(1)
C ₍₆₎	2782(4)	1417(1)	10727(1)	39(1)
N ₍₇₎	4073(4)	2784(1)	8087(1)	50(1)
O ₍₈₎	5640(4)	1923(1)	7628(1)	74(1)
O ₍₉₎	3281(5)	3748(1)	7652(1)	76(1)
C ₍₁₀₎	839(4)	2348(1)	12611(1)	36(1)
C ₍₁₁₎	1731(4)	3431(2)	13460(1)	45(1)
C ₍₁₂₎	1014(5)	3296(2)	14582(1)	56(1)
C ₍₁₃₎	-658(5)	2113(2)	14858(2)	58(1)
C ₍₁₄₎	-1568(5)	1042(2)	14021(2)	53(1)
C ₍₁₅₎	-787(4)	1153(2)	12906(1)	43(1)

TABLE 4. Bond Lengths (\AA) in Molecules of IV and V

Bond	Compound	
	IV	V
N ₍₁₎ —C ₍₂₎	1,312(2)	1,313(2)
C ₍₂₎ —N ₍₃₎	1,308(2)	1,313(2)
N ₍₃₎ —C ₍₄₎	1,354(3)	1,344(2)
C ₍₄₎ —C ₍₅₎	1,374(3)	1,390(2)
C ₍₅₎ —C ₍₆₎	1,382(3)	1,392(2)
N ₍₁₎ —C ₍₆₎	1,349(3)	1,339(2)
C ₍₂₎ —N ₍₇₎	1,505(3)	1,499(2)
N ₍₇₎ —O ₍₈₎	1,208(2)	1,218(2)
N ₍₇₎ —O ₍₉₎	1,205(2)	1,215(2)

TABLE 5. Bond Angles (deg) in Molecules of IV and V

Angle	Compound	
	IV	V
N ₍₁₎ —C ₍₂₎ —N ₍₃₎	132,0(2)	130,6(1)
C ₍₂₎ —N ₍₃₎ —C ₍₄₎	113,9(2)	114,2(1)
N ₍₃₎ —C ₍₄₎ —C ₍₅₎	119,9(2)	122,5(1)
C ₍₄₎ —C ₍₅₎ —C ₍₆₎	120,4(2)	115,8(1)
C ₍₅₎ —C ₍₆₎ —N ₍₁₎	119,8(2)	122,9(1)
C ₍₆₎ —N ₍₁₎ —C ₍₂₎	114,0(2)	114,0(1)
N ₍₁₎ —C ₍₂₎ —N ₍₇₎	113,7(2)	115,0(1)
C ₍₂₎ —N ₍₇₎ —O ₍₈₎	118,3(2)	117,2(1)
O ₍₈₎ —N ₍₇₎ —O ₍₉₎	123,7(2)	124,9(1)

TABLE 6. Bond Lengths (Å) in Molecules of Nitro Derivatives of Pyridine (Py) and Pyrimidine (Pym)

Bond	Statistical average bond lengths [10]	Average bond lengths			Deviation of average values from statistical average
		III [4]	IV and V	2-nitropyridines*	
N ₍₁₎ —C ₍₂₎ —N ₍₃₎ Pym	1,333(13)	1,329(7)	1,312(2)	—	-0,004
N ₍₁₎ —C ₍₂₎ Py	1,337(12)	—	—	1,308(2)	-0,021
C ₍₂₎ —C ₍₃₎ Py	1,379(12)	—	—	—	—
C—C _N	1,384(13)	1,378(9)	1,384(7)	1,373(15)	-0,006
C—NO ₂	1,468(14)	1,468(1)	1,502(3)	—	—
N—O	1,217(11)	1,222(7)	1,212(5)	1,497(5)	0,0
				1,215(7)	+0,034
				+0,005	-0,005
					+0,002

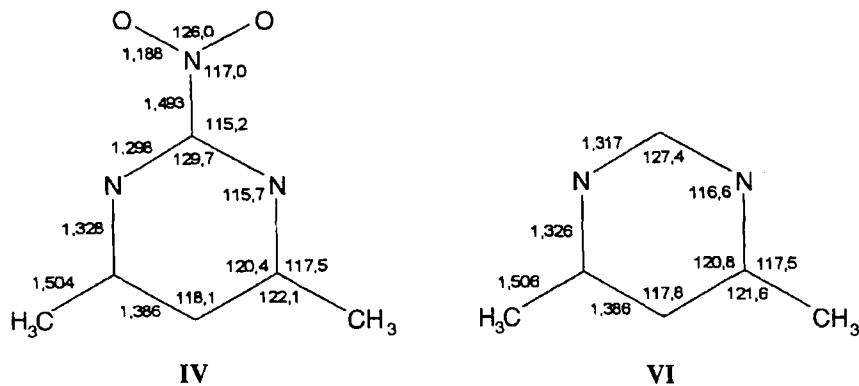

* Average values for I [1] and *exo*-6-acetoxy-3-nitro-5,6,7,8-tetrahydro-5,8-methanoquinoline [12].

TABLE 7. Change of Endocyclic Angle at *ipso*-Carbon Atom on Introduction of Nitro Group in the Ring

Compound with nitro group	Parent compound	Angle increase, $\Delta\alpha$, deg.	
		X-ray diffraction analysis	calculations
I	Pyridine	3,6 [1]	2,0*
II	Benzene	2,9 [1]	2,0*
IV	Pyrimidine	4,4*	4,7*
IV	4,6-Dimethylpyrimidine (VI)	—	2,3
V	Pyrimidine	3,0*	—
V	5-Phenylpyrimidine	3,1* ²	—

* Calculated for I, II and IV using quantum-chemical calculations [11]; for IV and V, from X-ray diffraction data [13].

² The angle $N_{(1)}-C_{(2)}-N_{(3)}$ for 5-phenylpyrimidine is 127.5(3) $^\circ$ from our data (X-ray diffraction analysis).

EXPERIMENTAL

Compounds IV and V were prepared by oxidation of the corresponding 2-hydroxyaminopyrimidines with ozone by the literature method [14]. Crystals for the structure analysis were grown by recrystallization from ethanol (IV, mp 118-120 $^\circ$ C; V, mp 205-207 $^\circ$ C).

X-ray Structure Analyses of IV and V were carried out on a Syntex P2₁ diffractometer using Cu K α -radiation and a graphite monochromator. The structures were solved by direct method using the SHELXS-86 program and were refined by anisotropic full-matrix least-squares method over all F^2 . The hydrogen coordinates were refined isotropically. The hydrogen atoms for the CH₃ groups in IV were calculated geometrically owing to disorder (~1:1). For V, the hydrogen atom coordinates were found in a difference synthesis. Quantum-chemical *ab initio* calculations using the 6-31G* basis set were performed using the GAMESS program [15].

The authors thank the International Science Foundation for support (grant NQN300) and the Russian Foundation for Basic Research for assisting with the licensing fee for use of the Cambridge Structure Database (project 96-07-89187).

REFERENCES

1. T. V. Rybalova, V. F. Sedova, Yu. V. Gatilov, and O. P. Shkurko, *Khim. Geterotsikl. Soedin.*, No. 10, 1367 (1998).
2. F. H. Allen and O. Kennard, *Chem. Design Autom. News*, **8**, 31 (1993).
3. V. A. Makarov, V. A. Tafeenko, and V. G. Granik, *Khim. Geterotsikl. Soedin.*, No. 3, 343 (1997).
4. W. A. W. Stolle, A. E. Frissen, A. T. M. Marcelis and H. C. van der Plas, *J. Org. Chem.*, **56**, 2411 (1991).
5. D. J. Brown, *The Pyrimidines*, J. Wiley and Sons, New York (1994), p. 294.
6. V. A. Koptyug (ed.), *Atlas of Spectra of Aromatic and Heterocyclic Compounds* [in Russian], Novosibirsk (1975), pp. 54, 55.
7. G. G. Moskalenko, V. F. Sedova, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, No. 8, 1110 (1989).
8. G. Casalone, A. Gavezzotti, and M. Simonetta, *J. Chem. Soc. Perkin Trans. 2*, No. 4, 342 (1973).
9. S. G. Baram, Candidate Thesis in Chemical Sciences, Novosibirsk (1983).
10. F. H. Allen, O. Kennard, D. J. Watson, L. Brammer, A. J. Orpen, and R. Taylor, *J. Chem. Soc. Perkin Trans. 2*, No. 12, S1 (1987).
11. J. S. Murray, J. M. Seminario, and P. Politzer, *J. Mol. Struct.*, **187**, 95 (1989).
12. H. Tanida, T. Irie, and Y. Wakisaka, *J. Heterocycl. Chem.*, **23**, 177 (1986).
13. L. Fernholz and C. Romming, *Acta Chem. Scand. A*, **32**, 271 (1978).
14. G. G. Moskalenko, V. F. Sedova, V. R. Akhmetova, V. N. Odinokov, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, No. 5, 657 (1990).
15. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, *J. Comput. Chem.*, **14**, 1347 (1993).